A simple high-dose gentamicin regimen showed no side effects among neonates

Anne Sofie Blaabjerg, Poul-Erik Kofoed, Mette Correll Dalegaard & Jesper Fenger-Gron

ABSTRACT
INTRODUCTION: Treatment of infections in neonates with gentamicin is a balance between optimising bactericidal effect and minimising adverse effects. Previously, at the Neonatal Intensive Care Unit (NICU) at Kolding Hospital, Denmark, neonates suspected of having infections were treated daily with gentamicin 5 mg/kg for the first three days, thus exposing the smallest neonates to double gentamicin amounts compared with those used in most Danish NICUs. We aimed to evaluate if this regimen increased the trough values and oto- and nephrotoxicity.

METHODS: Neonates admitted to the NICU between 2008 and 2012 and treated with gentamicin were included retrospectively in the study. Neonates with trough serum (S)-gentamicin level ≥ 2.0 mg/l before the third dose were reviewed in detail.

RESULTS: In total, S-gentamicin level was measured in 253 treated neonates of whom 7% displayed elevated trough values. Neonates < 32 weeks of age had a slightly higher incidence of S-gentamicin level ≥ 2.0 mg/l compared with less premature and mature infants (16%, 13%, and 2%, respectively). No oto- or nephrotoxicity was found despite the high-dose gentamicin regimen.

CONCLUSIONS: The incidence of elevated S-gentamicin trough levels was measured in 253 treated neonates of whom 7% displayed elevated trough values. Neonates < 32 weeks of age had a slightly higher incidence of S-gentamicin level ≥ 2.0 mg/l compared with less premature and mature infants (16%, 13%, and 2%, respectively). No oto- or nephrotoxicity was found despite the high-dose gentamicin regimen.

FUNDING: none.

Gentamicin, an aminoglycoside antibiotic, is extensively used to treat serious bacterial infections in neonates and older infants [1]. Gentamicin is a bactericidal antibiotic that is effective against most gram-negative bacteria, Staphylococcus aureus and other bacteria [2]. Although the efficacy of gentamicin is related to the peak serum concentration, continually elevated trough levels could cause toxicity due to gentamicin accumulation in the inner ears and kidneys [3, 4].

In adults and older infants, ototoxicity correlates with the duration of treatment, cumulative dose and number of treatments [5]; the effect on the cochlea and vestibule seems non-reversible [6]. Renal toxicity, however, which is associated with renal function and cumulative dose, is often reversible at the end of treatment [6]. In comparison to older infants and adults, gentamicin toxicity is believed to be lower in neonates when administered in controlled therapeutic doses [7, 8]. This may be attributed to a larger volume of distribution [2]. Nevertheless, most studies recommend maintaining a trough level < 2 mg/l in neonates due to the risk of toxicity [2, 4, 9].

There are numerous different dosing regimens for the administration of gentamicin in neonates, often involving multiple daily doses administered at short intervals [10, 11]. Previously, several studies have attempted to determine the optimal dosing regimen by optimising the bactericidal effect while minimising the risk of oto- and nephrotoxicity [5, 12], which has led to several seemingly contradictory recommendations. One proposed a single daily dose [10], while others suggested adjusting the interval 24-48 h according to gestational age (GA) [4] or weight [2, 9]. A study from 2012 [11] advocated adjusting the interval between doses based on serum gentamicin (S-gentamicin) measured 22 h after the first dose. In daily clinical practice, however, some of these regimens are difficult to follow which may increase the risk of dosing errors and bacterial breakthrough infection.

FUNDING: none.

GA = gestational age at birth
NICU = neonatal intensive care unit
PMA = postmenstrual age

ABBREVIATIONS

ORIGINAL ARTICLE
Department of Paediatrics, Kolding Hospital, Denmark

Dan Med J 2017;64(6):A5387
The values are n (%).

Characteristics of 253 neonates treated with gentamicin, stratified according to gestational age at birth.

<table>
<thead>
<tr>
<th>S-gentamicin level ≥ 2.0 mg/l</th>
<th>S-gentamicin level < 2.0 mg/l</th>
<th>Positive bacterial cultures, total</th>
<th>Sepsis suspicion</th>
<th>Profylactic treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 (84)</td>
<td>47 (87)</td>
<td>146 (98)</td>
<td>126 (85)</td>
<td></td>
</tr>
<tr>
<td>34 (23)</td>
<td>32 (22)</td>
<td>8 (16)</td>
<td>9 (18)</td>
<td></td>
</tr>
</tbody>
</table>

METHODS

The present study retrospectively evaluated if the daily administration of 5 mg/kg gentamicin for the first three days of treatment to all neonates, irrespective of GA at start of treatment, exposes the smallest neonates to increased gentamicin trough levels, thereby increasing the risk of oto- and nephrotoxicity.

RESULTS

During the five-year study period, 1,914 neonates were admitted to the NICU and 364 received gentamicin treatment. A total of 29 were excluded as they were transferred to other hospitals during their treatment, and 82 did not have a gentamicin measurement; in 73

TABLE 1

Characteristics of 253 neonates treated with gentamicin, stratified according to gestational age at birth. The values are n (%).

<table>
<thead>
<tr>
<th>Gestational age, weeks + days</th>
<th>25 + 1-31 + 6</th>
<th>32 + 0-36 + 6</th>
<th>3 ≥ + 42 + 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonates Boys</td>
<td>33 (66)</td>
<td>35 (65)</td>
<td>90 (60)</td>
</tr>
<tr>
<td>Girls</td>
<td>17 (34)</td>
<td>19 (35)</td>
<td>59 (40)</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>54</td>
<td>149</td>
</tr>
</tbody>
</table>

Indication for treatment

- Profylactic treatment: 9 (18), 16 (30), 23 (15)
- Sepsis suspicion: 41 (82), 38 (70), 126 (85)
- Positive bacterial cultures, total: 32 (64), 12 (22), 34 (23)
- S-gentamicin level < 2.0 mg/l: 42 (84), 47 (87), 146 (98)
- S-gentamicin level ≥ 2.0 mg/l: 8 (16), 7 (13), 3 (2)
treatment was discontinued before S-gentamicin level was measured, and nine died before receiving the third dose. The causes of death were severe malformations (n = 4), metabolic disease (n = 2), cerebral bleeding (n = 1), severe asphyxia (n = 1) and necrotising enterocolitis (n = 1). The remaining 253 neonates were included in the present study. None of the neonates were treated concomitantly with nonsteroidal anti-inflammatory drugs, loop diuretics or vancomycin.

Table 1 summarises the findings of the 253 neonates treated with gentamicin. A total of 18 neonates demonstrated an S-gentamicin level of 2 mg/l or above. When the results were stratified according to GA, the most premature group showed an increased risk of having an elevated S-gentamicin level compared with the mature group (p = 0.02, χ²-test). Additionally, significantly more neonates with a GA < 32 weeks had a positive bacterial culture compared with the mature group (p < 0.001, χ²-test). The less premature group did not differ significantly from the very premature and mature groups.

Table 2 summarises information about the 18 neonates who had an S-gentamicin level ≥ 2.0 mg/l, among whom 13 neonates (72%) had only a slight elevation between 2.0 and 3.0 mg/l, whereas three neonates displayed highly elevated values of 6.4, 7.7 and 9.2 mg/l, respectively. The two highest values are probably erroneous and were likely to have been measured after gentamicin dosing. In the first case, after receiving the next equivalent dose, the S-gentamicin level of the neonate decreased remarkably from 7.7 mg/l to 1.7 mg/l 24 h later. The second neonate with an S-gentamicin level of 9.2 mg/l received prolonged and repeated gentamicin treatment, but showed no elevated level of S-gentamicin again. The recorded value of 6.4 mg/l is most probably correct as this neonate was very sick and had impaired renal function, and thus only received two doses of gentamicin.

It remains unknown how many neonates with normal S-gentamicin levels had a hearing test performed. Table 3 shows details regarding the ten neonates who were treated with gentamicin twice during their first month of life.

DISCUSSION

Several different regimens have been proposed for the administration of gentamicin to neonates, the aim of which to optimise the bactericidal effects while minimis-
Consensus on the dose and dosing interval has not been established for gentamicin, and several complicated dosing regimens exist. At the NICU at Kolding Hospital, a single daily dose of gentamicin of 5 mg/kg was administered for the first three treatment days, irrespective of the GA or PMA at treatment initiation. The fourth dose, however, was corrected according to the S-gentamicin trough level. This recommendation was easy to follow and probably lowered the risk of dosing errors in comparison to other more complicated regimens where gentamicin was administered at extended or variable intervals [13, 17]. Since gentamicin is primarily cleared through the kidneys, the administration of an equivalent gentamicin dose to all neonates could increase the risk of elevated gentamicin trough levels among the smallest neonates who have the lowest renal clearance [18, 19]. For this reason, in 2013 the department changed the dosing regimen according to the guideline of the Danish Paediatric Society regarding the empiric treatment of early neonatal group B streptococcal sepsis. Gentamicin dosing is now stratified into 5 mg/kg every 48 h to neonates with a GA < 32 weeks, and 4 mg/kg every 24 h as from GA 32 weeks [20]. After changing the gentamicin guideline at the unit, it was decided to retrospectively evaluate if the previous, more aggressive gentamicin regimen had exposed the smallest neonates to oto- or nephrotoxicity.

In total, with the previous gentamicin regimen, 7% of gentamicin-treated neonates had an elevated S-gentamicin trough level > 2.0 mg/l, whereas 93% of neonates had an acceptable level (< 2.0 mg/l). Neonates < 32 weeks had a slightly higher incidence (16%) of having S-gentamicin levels ≥ 2.0 mg/l compared with the less premature (13%) and mature groups (2%). However, the increased risk of elevated S-gentamicin level for the youngest neonates was counterbalanced by an increased risk of having serious culture-positive bacterial infections compared with the group of mature neonates. These results corroborate previous studies, reporting elevated trough levels in 6.7% of neonates who were administered a daily gentamicin-dose of 4 mg/kg [8], while a regimen in which neonates weighing less than 1,250 g were administered gentamicin 4 mg/kg every 48 h while those above this weight who were administered by the same dose 24 hourly reported a slightly lower incidence (4.3%) [2]. Currently, the results cannot be compared to the outcome of using gentamicin administration following the national guideline, since this has not yet been evaluated.

The peak concentration of aminoglycoside is the

<table>
<thead>
<tr>
<th>Characteristics of the ten neonates treated with gentamicin twice.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postmenstrual age at initiation of 1st treatment, weeks + days</td>
</tr>
<tr>
<td>28 + 2</td>
</tr>
<tr>
<td>28 + 2</td>
</tr>
<tr>
<td>28 + 3</td>
</tr>
<tr>
<td>28 + 4</td>
</tr>
<tr>
<td>29 + 2</td>
</tr>
<tr>
<td>29 + 2</td>
</tr>
<tr>
<td>32 + 2</td>
</tr>
<tr>
<td>33 + 0</td>
</tr>
<tr>
<td>34 + 5</td>
</tr>
<tr>
<td>35 + 0</td>
</tr>
</tbody>
</table>

^a Neonatal evaluation: transient evoked otoacoustic emission and automatic auditory brainstem response, pass/pass.
^b Evaluation at the outpatient clinic, typically at 1 and 2 yrs of age, 1 child evaluated at ear specialist.
^c S-creatinine level not measured later, blood urea nitrogen level 1.3 mmol/l at 2 mo.s of age.
^d Blood urea nitrogen level 1.1 mmol/l at 1 mo. of age.
single most important factor that correlates with the successful treatment of bacterial infections using aminoglycosides. Therefore, lower doses, used to avoid adverse effects, increased the risk of having a peak concentration below the recommended range, and thus consequently reduced bactericidal effect [2]. Likewise, extending dosing intervals could increase the risk of breakthrough infection. Remarkably, the department experienced two very serious infections in premature neonates caused by ampicillin-resistant Escherichia coli after the shift to the new regimen with longer dosing intervals. Both neonates improved initially after the first gentamicin dose, but deteriorated again before the second, delayed dose. One died [14]. The overall incidence of breakthrough infections caused by ampicillin-resistant gentamicin-sensitive microorganisms with different guidelines is currently unknown.

Other studies have indicated that gentamicin toxicity among neonates is lower than in adults [2, 7]. Still, the lack of oto- and nephrotoxicity, despite the high-dose gentamicin regimen, is an important finding of this study. Neither the neonates exposed to large, cumulative doses following repeated treatment, nor the neonates who developed an elevated S-gentamicin trough level, displayed signs of subsequent hearing loss or impaired renal function. However, the evaluation of this treatment regimen cannot necessarily be generalised to the most intensive neonatal settings, where gentamicin treatment may be combined with nonsteroidal anti-inflammatory drugs, loop-diuretics, or vancomycin.

The simple gentamicin treatment regimen consisting of a daily dose of 5 mg/kg has the potential advantage of minimising dosing errors and the risk of breakthrough infection. Although an increased risk of elevated gentamicin trough values was found among the very premature neonates, we observed no evidence of oto- or nephrotoxicity. The daily administration of gentamicin at a dose of 5 mg/kg for the first three days of treatment should be considered for use in level II NICUs. A prospective study evaluating the different aspects of the current national neonatal practice, however, would be of great value to recommend future antibiotic treatment regimens.

CORRESPONDENCE: Anne Sofie Blaabjerg. E-mail: anneblab@rm.dk

ACCEPTED: 9 May 2017

CONFLICTS OF INTEREST: Disclosure forms provided by the authors are available with the full text of this article at www.danmedj.dk

LITERATURE