Laser-assisted Delivery of Topical Methotrexate

- **In vitro investigations**

Elisabeth Hjardem Taudorf

This review has been accepted as a thesis together with three previously published papers by University of Copenhagen February 11, 2016 and defended April 14, 2016

Tutors: Merete Haedersdal, Rox Andersson, Uwe Paasch, and Catharina M Lerche

Official opponents: Albert Wolkerstorfer and Peter Bjerring

Correspondence: Elisabeth Hjardem Taudorf, Dpt. of Dermatology, Bispebjerg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark

E-mail: Ehtaudorf@dadlnet.dk

Dan Med J 2016;63(6):B5254

LIST OF STUDIES

BACKGROUND

Topical drug delivery across skin barrier

The skin imposes a physico-chemical barrier to topical drug delivery. Pretreatment with various chemical or physical techniques can disrupt skin barrier and enable enhanced delivery of well-known topical drugs as well as new possibilities for topical application of systemic drugs. Thus, pretreatment of the skin may enhance the efficacy of topical treatments as well as broaden the spectrum of available topical drugs. Some barrier disruption techniques may even facilitate customized treatments targeted at dermatological diseases in specific layers of the skin. Furthermore, systemic exposure can potentially be avoided in localized dermatological diseases, whereby adverse effects from systemic therapy may be minimized.

Skin is composed of an epidermis and a dermis with appendages such as hair follicles, sweat glands and sebaceous glands. The superficial unviable stratum corneum consists of keratin-filled dead corneocytes with low water content, whereas the underlying viable parts of epidermis contain keratinocytes with a high water content [1, 2]. Stratum corneum consists of 15 – 20 layers of densely packed corneocytes surrounded by an extracellular matrix of hydrophobic non-polar lipids in a “brick-and-mortar” structure that protects underlying tissue from mechanical stress, dehydration, infectious agents and chemicals [3]. Stratum corneum is considered the main barrier for topical drug delivery [1–3] although studies have also demonstrated barrier function of the basement membrane and of tight junctions between keratinocytes in viable epidermis [4, 5]. Passive absorption across the unviable stratum corneum into underlying viable epidermis and dermis may occur by: i) Transcellular absorption through cell membranes of corneocytes, ii) Intercellular absorption in the lipid matrix surrounding corneocytes and iii) Appendageal absorption through hair follicles and glands [6, 7]. Despite these passageways, absorption into and across skin is impaired for hydrophilic and charged molecules as well as lipophilic molecules of > 500 Da [6, 8, 9].

The rate of drug absorption is described by Fick’s law of passive diffusion:

\[
\text{Flux} = \frac{(P \times D \times \Delta C)}{\Delta L}
\]

Flux increases by higher partitioning of the drug from vehicle into stratum corneum \((P = \text{Partitioning coefficient})\), ability to diffuse within the skin \((D = \text{Diffusion coefficient})\) and difference in drug concentration between vehicle and skin \((\Delta C = \text{Concentration gradient})\). In contrast, flux decreases when the diffusion pathway increases \((\Delta L = \text{Length of the diffusion pathway})\) [6, 7].
Chemical as well as physical approaches have been applied in order to enhance skin permeability and flux of small lipophilic drugs as well as to enable topical delivery of large, hydrophilic or charged molecules as illustrated in fig. 1 [9, 10]. Chemical techniques include penetration enhancers in vehicles or skin patches such as alcohols, glycols and sulphoxides as well as encapsulation of topically applied molecules in e.g. vesicles or liposomes (fig. 1) [11, 12]. Chemical enhancement has the advantage of being noninvasive and often inexpensive, whereas disadvantages include inability to deliver large amounts of drug, difficulty in controlling rate of penetration and risk of contact sensitivity [9, 11, 12]. Physical barrier disruption techniques generally delivers larger amounts of drug than chemical enhancement techniques and include mechanical penetration, laser energy, electrical energy or other energy-based devices (fig. 1). Challenges to the physical techniques may include lack of standardization, difficulty to control rates of penetration and limited ability to target topical drugs at specific layers of the skin. The ablative fractional laser (AFXL) technology offers a possibility to generate standardized laser-tissue interactions and provide a customized and reproducible number of laser channels of precise and adjustable dimensions with minimal ablation of surface area [13]. Variation of laser channel dimensions can be utilized to personalize laser treatments. Penetration depth is of specific clinical interest since it may affect the ability to target laser-assisted drug delivery at specific skin layers. Furthermore, the laser channels of ablated tissue may serve as a reservoir for topical drugs.

In this PhD thesis, AFXL has for the first time been utilized to deliver topical Methotrexate (MTX). Topical skin deposition, biodistribution and transdermal permeation are investigated for up to 24 h of continuous MTX exposure and new knowledge is added regarding impact of penetration depth and transport kinetics on AFXL-assisted topical delivery of MTX.

Laser

The word Laser is an acronym for Light Amplification by Stimulated Emission of Radiation [14]. A laser emits monochromatic, coherent, unidirectional light through a process of optical amplification based on stimulated emission of electromagnetic radiation [14]. The result is single-wavelength, uni-directional photons moving in-phase in a collimated narrow beam. The beam can

Figure 1: Enhancement strategies for topical drug delivery. Modified from Schuetz et al., 2005 [10] and Brown et al., 2006 [9].
either stay focused over long distances or provide intense energy at specific skin sites.

Available lasers cover a spectrum of ultraviolet, visible and infrared wavelengths [14]. The selected wavelength as well as the energy level of the laser affects depth of penetration, and medical lasers of specific wavelengths typically target distinct tissue chromophores such as e.g. hemoglobin, melanin, hydroxyapatite or water (fig. 2) [15]. When a laser of a certain wavelength, energy and pulse duration is absorbed by a defined chromophore, a controlled destruction is induced without significant damage to the surrounding tissue, as described by the theory of selective photothermolysis [16].

Lasers that target tissue water can be either non-ablative or ablative depending on the absorption coefficient. Non-ablative lasers, as e.g. the neodymium-doped yttrium aluminium garnet laser (1,440nm Nd:YAG) and the erbium glass laser (1,540 nm Er:Glass), have low absorption coefficients in tissue water and cause thermal coagulation in the dermis beneath an intact skin barrier (fig. 2) [14, 15, 17]. Ablative lasers have higher absorption in tissue water and evaporates the epidermal skin barrier as well as underlying tissue (fig. 2) [14, 15, 17]. Examples of ablative lasers include erbium-doped yttrium scandium gallium garnet laser (2,790 nm YSGG), erbium-doped YAG lasers (2,940 nm Er:YAG), and carbon dioxide lasers (10,600 nm CO2) (fig. 2). Laser energy can be applied to the entire skin surface or to specific fractions of skin. The concept of non-ablative fractional photothermolysis was invented in 2004 [18], and was further developed into ablative fractional laser (AFXL) in 2007 [13, 19].

Ablative fractional laser (AFXL)

AFXL physically disrupts the skin barrier and generates arrays of ablated laser channels into the skin, leaving surrounded skin unaffected as illustrated in fig. 3. Each ablated column constitutes a microscopic ablation zone (MAZ) that may be utilized for intra- and transdermal drug delivery (fig. 3) [13, 19]. Ablated MAZ dimensions are described by ablation depth (AD), thickness of the thermal coagulation zone lining the laser channel (CZ) and epidermal ablation width (AW) [20].

Ablative fractional laser holds the potential to provide accurate and reproducible arrays of MAZs that can be adjusted by varying laser parameters. The number of ablated channels can be adjusted by varying surface ablation density, while the dimensions of each ablated MAZ is modulated by the applied laser energy.

Surface ablation density is defined as fraction of skin surface covered by MAZs and can typically be adjusted in the range of 1 – 40 % depending on laser device [17]. Density can be calculated theoretically from the spot size of the laser beam or experimentally based on the histologically measured AW of ablated MAZs \((\pi \times \frac{1}{2} \times AW \times cm)^2 \times MAZs/cm^2\). In addition, the total ablated skin volume per cm² can be experimentally determined based on histologically measured dimensions and the mathematical formula for volume of a cone \((\frac{1}{2} \times \pi \times \frac{1}{2} \times AW \times cm^2) \times AD \times cm \times MAZs/cm^2\) [20]. Dimensions of each individual MAZ can be varied by adjusting the physical properties of the delivered energy. The total energy delivered per MAZ (mJ/MAZ) is determined by multiplying pulse energy (mJ/microbeam) with the applied number of stacked pulses. The pulse energy is generated from the available laser power (Watt), and high-powered laser devices thus provide higher pulse energy by fewer stacked pulses to build up total energy than low-powered laser devices. High pulse energies are generally found to generate deeper tissue penetration than low pulse energies [13, 20, 21], whereas the duration of each pulse (µs – ms), as well as the frequency of delivered pulses (Hz) may also affect MAZ dimensions.

Initially, lasers based on large platforms provided high power levels and pulse energies, while lately, small portable fractional lasers utilize stacked pulses to compensate for low pulse energies. Knowledge is sparse on laser-tissue interactions for the large variety of miniaturized lasers with different specifications [17], although the use is increasing due to a growing clinical demand for AFXL treatments and laser-assisted topical drug delivery. Thus, histological MAZ dimensions generated by a miniaturized low-powered Er:YAG AFXL is investigated in this PhD thesis and used as a model of general AFXL in the further studies of AFXL-assisted topical MTX delivery.
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Applied agent</th>
<th>In vitro</th>
<th>In vivo animal</th>
<th>Human clinical studies</th>
<th>Human RCTs^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinic Keratosis/Mb. Bowen/BCC^c</td>
<td>MAL^a</td>
<td>[45]</td>
<td>[23] (IIb)</td>
<td>[25] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[46]</td>
<td>[30] (IIa)</td>
<td>[26] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[47]</td>
<td>[27] (Ia)</td>
<td>[28] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[48]</td>
<td>[29] (Ia)</td>
<td>[32] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[34] (Ia)</td>
<td>[33] (la)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[32] (Ia)</td>
<td></td>
</tr>
<tr>
<td>Actinic Keratosis/MB. Bowen/ BCC^c</td>
<td>MAL^a</td>
<td>[45]</td>
<td>[23] (IIb)</td>
<td>[25] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[46]</td>
<td>[30] (IIa)</td>
<td>[26] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[47]</td>
<td>[27] (Ia)</td>
<td>[28] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[48]</td>
<td>[29] (Ia)</td>
<td>[32] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[34] (Ia)</td>
<td>[33] (la)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[32] (Ia)</td>
<td></td>
</tr>
<tr>
<td>ALA^b</td>
<td></td>
<td>[49, 50]</td>
<td>[47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In. Meb.^e</td>
<td></td>
<td>[51]</td>
<td>[24] (IV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluorouracil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imiquimod</td>
<td></td>
<td>[52]</td>
<td>[52]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diclofenac</td>
<td></td>
<td>[53]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scars & Keloids</td>
<td>Topical Steroid</td>
<td>[54]</td>
<td>[35] (IIb)</td>
<td>[36] (III)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PLLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>Lidocaine</td>
<td>[55]</td>
<td>[56]</td>
<td>[57] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[38] (la)</td>
<td></td>
</tr>
<tr>
<td>Onychomycosis</td>
<td>Amorolfine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[39] (Iib)</td>
<td></td>
</tr>
<tr>
<td>Warts</td>
<td>ALA^e</td>
<td></td>
<td></td>
<td>[22] (Iib)</td>
<td></td>
</tr>
<tr>
<td>Hemangiomas</td>
<td>Timolol</td>
<td></td>
<td></td>
<td>[40] (Iib)</td>
<td></td>
</tr>
<tr>
<td>Aesthetic treatments</td>
<td>Botulinum toxin</td>
<td></td>
<td></td>
<td>[41] (Ia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vitamin C</td>
<td>[58]</td>
<td>[58]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tranexamic acid</td>
<td></td>
<td></td>
<td>[60]</td>
<td></td>
</tr>
<tr>
<td>Vaccines</td>
<td>Ovalbumin</td>
<td></td>
<td></td>
<td>[61]</td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>Sterile cells</td>
<td>[62, 63]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antibodies</td>
<td>[64]</td>
<td>[64]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aMAL: Methyl aminolevulinate (photosensitizer)
^bALA: Aminolevulinic acid (photosensitizer)
^cBCC: Basal Cell Carcinomas
^dLevel of Evidence [65]:
 Ia: RCT
 IIa: Clinical placebo-controlled study
 IIb: Prospective Cohort study
 III: Retrospective descriptive study
 IV: Case report
^eIn. Meb.: Ingenol Mebutate
^fPLLA: Poly-L-Lactic Acid
Ablative fractional laser for topical drug delivery

The concept of AFXL-assisted topical drug delivery was introduced in 2009 [22] and has since been profoundly investigated as illustrated in Table 1. The technique has been applied for a range of clinical indications including precancerous lesions and non-melanoma skin cancers (NMSC) [23–34], scars and keloids [35–37], anesthetics [38], onychomycosis [39], warts [22], hemangiomas [40] and aesthetic conditions [41] (Table 1). The field of AFXL-assisted topical drug delivery for precancerous lesions and NMSC is thoroughly investigated and promising clinical results have especially been achieved by AFXL-assisted delivery of methyl aminolevulinate (MAL) prior to PDT-treatment of precancerous lesions [23, 25–29, 33, 34, 42] (Table 1). However, complete clearance rates have not been reached for all patients, and especially the treatment of thick nodular Basal Cell Carcinomas (BCCs) [30, 32] and multiple actinic keratoses in immunosuppressed patients can be challenging [26, 29]. Hence, further knowledge is needed on optimal treatment conditions. Topical treatments targeted at tumor cells in superficial as well as deep skin layers may increase clearance rates. Besides, pretreatment by AFXL could extend the spectrum of available anti-cancer drugs to include topical delivery of systemic chemotherapeutic agents.

Methotrexate (MTX)

Methotrexate is a well-proven chemotherapeutic and anti-inflammatory drug [43, 44]. Mechanism of action behind the anti-inflammatory properties of MTX is uncertain, while the anti-neoplastic property is mainly caused by antimetabolite activity. MTX blocks folic acid metabolism and consequently disturbs de novo synthesis of thymidylate and purines, whereby DNA and RNA synthesis is inhibited [44]. MTX is administered by oral or parenteral routes and systemic distribution inflicts a risk of severe adverse effects such as pneumonitis, myelotoxicity and hepatoxicity [66]. Generalized dermatological inflammatory diseases often benefit from systemic MTX therapy, while topical delivery of MTX may be a safer choice for the treatment of localized dermatological tumors or inflammatory disorders [67]. However, the 454 Da, hydrophilic MTX-molecule (log P = −1.85), which is negatively charged at physiological pH, has negligible capacity for passive diffusion across the intact skin barrier [44, 67]. Thus, the molecule can be considered a model for other hydrophilic or charged molecules, which cannot penetrate skin barrier. Pretreatment by AFXL has not previously been utilized to deliver topical MTX, while previous in vitro studies have demonstrated that MTX is capable of penetrating the skin barrier by chemical enhancement [68–71], iontophoresis [72–77], electroporation [78], microneedles [72, 79], and full-ablative laser exposure [78].

Studying topical drug delivery In vitro

In vitro diffusion of topical drugs is studied in vertical upright or in horizontal side-by-side test chambers with static or continuously replaced “flow-through” receiver fluid [7, 80]. Vertical diffusion cells are preferred for studies of semi-solid formulations, while both types can be used to study diffusion of aqueous solutions [7, 80]. A “flow-through” receiver fluid and a viable skin membrane are required to study the effect of skin metabolism on drug absorption, while specific information about drug diffusion can be obtained by nonviable skin in static diffusion cells. The most commonly used vertical type of static diffusion cells, the Franz skin permeability cells (FC), was selected in this PhD thesis to study AFXL-assisted topical delivery of aqueous MTX-disodium solution (fig. 4).
hydration, thickness, anatomical site and condition of the skin, and thus, all these parameters should be standardized [7]. Skin barrier integrity should be controlled after preparation and prior to drug diffusion by e.g. measurements of trans-epidermal water loss or by transcutaneous electrical impedance as selected in this PhD thesis [82, 88].

Receiver chamber

The investigated test molecules or drugs should be completely soluble in the receiver solution in order to avoid introduction of false barriers to drug diffusion during FC experiments. Thus, isotonic phosphate buffered saline (PBS) could be used for investigations of hydrophilic molecules, as selected in this PhD thesis, while lipophilic molecules require solvents that increase lipophilicity such as e.g. an ethanol:water mixture [7]. Regardless of selected receiver fluid, composition should not affect skin barrier integrity [81]. In general, protease inhibitors, antiseptic or antibiotic agents may be added to the buffer solution to reduce overgrowth of bacteria or fungus, and to protect fragile test molecules or drugs.

Detection methods

Validated detection methods are essential to describe diffusion of drug into and across skin. For quantification, techniques such as radiolabeling of test molecules or drugs, High Performance Liquid Chromatography (HPLC), gas chromatography, or

<table>
<thead>
<tr>
<th>Imaging technique</th>
<th>Images of</th>
<th>Applied agent</th>
<th>Samples/interv.</th>
<th>Calculations</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightfield microscopy</td>
<td>Dye</td>
<td>Methylene Blue</td>
<td>6</td>
<td>+</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulforhodamine B</td>
<td>1</td>
<td>-</td>
<td>[61]</td>
</tr>
<tr>
<td>Widefield fluorescence microscopy</td>
<td>Fluorescent dye</td>
<td>Sulforhodamine B</td>
<td>6</td>
<td>+</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>Fluorescence-labeled molecule</td>
<td>Ovalbumin</td>
<td>6</td>
<td>+</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thymoglobulin</td>
<td>1</td>
<td>-</td>
<td>[64]</td>
</tr>
<tr>
<td></td>
<td>Protoporphyrin IX fluorescence</td>
<td>MAL<sup>a</sup></td>
<td>10</td>
<td>+</td>
<td>[45]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAL<sup>a</sup></td>
<td>10</td>
<td>+</td>
<td>[46]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAL<sup>a</sup>, ALA<sup>b</sup></td>
<td>7</td>
<td>+</td>
<td>[47]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAL<sup>a</sup></td>
<td>10</td>
<td>+</td>
<td>[48]</td>
</tr>
<tr>
<td>Confocal fluorescence Microscopy</td>
<td>Fluorescent dye</td>
<td>FITZ<sup>2</sup></td>
<td>1</td>
<td>-</td>
<td>[55]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FITZ<sup>2</sup></td>
<td>1</td>
<td>-</td>
<td>[52]</td>
</tr>
<tr>
<td></td>
<td>Fluorescence-labeled molecule</td>
<td>Ovalbumin</td>
<td>3</td>
<td>-</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bovine Serum Albumin</td>
<td>1</td>
<td>-</td>
<td>[93]</td>
</tr>
<tr>
<td></td>
<td>Protoporphyrin IX fluorescence</td>
<td>ALA<sup>b</sup></td>
<td>1</td>
<td>-</td>
<td>[49]</td>
</tr>
</tbody>
</table>

^aMAL: Methyl aminolevulinate
^bALA: Aminolevulinic acid
²FITZ: Fluorescein isothiocyanate
^dP-2: Polypeptide with a molecular weight of 2.19 kDa
^eFD: Fitz-labeled dextrans of 4 and 150 kDa

Figure 5: Haematoxylin & Eosin (H&E) stained skin from human (A) and porcine (B) flank area. Similarities include sparse hair coat and well differentiated epidermal layers while differences include slightly thicker stratum corneum and less differentiated rete ridges in porcine skin.
Liquid Chromatography Mass Spectrometry (LC-MS) can be used [7]. MTX has previously been quantified by HPLC [89–91], LC-MS [91], Enzyme-Linked Immunosorbent Assays (ELISA) [90] and spectrophotometry [92]. Apart from quantifying intradermal and transdermal amounts of test molecule or drug it is important to gain knowledge of qualitative biodistribution within the skin. Intradermal biodistribution of MTX has never previously been investigated and knowledge of accumulation in specific structures or layers of the skin may lead to the development of improved topical delivery targeted at specific dermatological disorders. As illustrated in table 2, biodistribution of other AFXL-assisted topically delivered test molecules or drugs has so far been imaged by brightfield microscopy [61], widefield fluorescence microscopy [45–48, 61, 64] and confocal fluorescence microscopy [49, 52, 55, 61, 93]. In addition to imaging, quantification or semi-quantification of test molecule or drug concentrations at specific skin levels have been utilized to describe intradermal biodistribution profiles [45–48, 51, 61].

AIM

The overall aim was to characterize AFXL-assisted topical delivery of MTX into and across skin.

Specific study objectives were to investigate:

1. Specific laser-tissue interactions by histological examination and mathematical modeling of MAZ dimensions generated by a miniaturized low-powered Er:YAG AFXL using stacked pulses with a variety of laser settings (study I).

2. The importance of transport kinetics to intradermal biodistribution and transdermal permeation of MTX after AFXL-assisted topical delivery (study II).

3. The importance of transport kinetics to intradermal biodistribution and transdermal permeation of MTX after AFXL-assisted topical delivery (study III).

MATERIALS AND METHODS

Study designs

In Study I, laser-tissue interactions were characterized in a histological in vitro pig skin model (Table 3). Results enabled estimates of specific MAZ dimensions from combinations of laser parameters that were utilized in studies II and III to investigate the impact of MAZ depth and transport kinetics on topical delivery of MTX in in vitro FCs (Table 4).

Fractional laser ablation

A 2,940 nm Er:YAG laser prototype with an internal scanner and a fixed spot size of 225 µm was used in all three studies (P.L.E.A.S.E.® (Precise Laser Epidermal System) Professional, Pantec Biosolutions AG, Ruggell, Liechtenstein). The laser device delivered energy at predefined fixed combinations of power, pulse energy, pulse duration and pulse repetition rate.

In study I, a total of 12 laser interventions were evaluated, consisting of four fixed combinations of laser parameters applied by 2, 20 and 50 stacked pulses (Setting 0 – 3, Table 3). Surface ablation density of 5% (calculated based on spot size) corresponding to 97 MAZs/cm² was selected to ensure a sufficient number of MAZs for evaluation in each histological section.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Laser parameters</th>
<th>Stacked pulses</th>
<th>Total Energy (mJ/MAZ)</th>
<th>Biopsies</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.3 mJ/pulse, 1.15 W, 50 µs 500 Hz</td>
<td>2, 20, 50</td>
<td>4.6, 46.0, 115.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.6 mJ/pulse, 1.69W, 125 µs 300 Hz</td>
<td>2²MAZ-E, 20, 50</td>
<td>11.2, 112.0, 280.0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>7.4 mJ/pulse, 2.22W, 225 µs 300 Hz</td>
<td>2, 20, 50</td>
<td>14.8, 148.0, 370.0</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>12.8 mJ/pulse, 1.28 W, 225 µs 100 Hz</td>
<td>2²MAZ-DS, 20²MAZ-DM, 50</td>
<td>25.6, 256.0, 640.0</td>
<td>10</td>
</tr>
</tbody>
</table>

Total number of biopsies evaluated 91

Settings are categorized according to increasing pulse energy. Pulse energy of 2.3 mJ/pulse did not create histologically visible MAZs at 2 and 20 stacks, and was referred to as setting 0.

MAZ-E: Epidermal Microscopic Ablation Zone (MAZ) MAZ-DS: Superficial dermal MAZs

MAZ-DM: Mid-dermal MAZs

Table modified from study I.
In study II, the impact of MAZ depth was studied by MAZs reaching epidermis (MAZ-E), superficial dermis (MAZ-DS) and mid-dermis (MAZ-DM) (Tables 3 and 4), while in study III, MAZ-DM were selected for investigation of transport kinetics of topically applied MTX. In both studies, surface ablation density was reduced to 2.4 % (calculated based on spot size) corresponding to 47 MAZs/cm². Low density has previously proven sufficient to deliver other topical drugs [45, 51, 94], and was found appropriate for delivery of MTX in pilot studies (not shown).

Porcine skin model

Nonviable porcine flank skin was harvested immediately after euthanasia of female, Danish landrace/Yorkshire pigs (3 months old, 35 – 40 kg). Skin was preserved at -20 °C for one week (study I) or -80 °C for up to three months (study II & III) due to longer duration of FC studies than of histological study. Laser was exposed to clean and dry 20 – 21 °C full-thickness skin trimmed of excessive hair. After laser exposure, either five mm punch biopsies were collected and fixated in 4 % paraformaldehyde for histological analyses (study I) or skin were transferred to FC chambers for studies of diffusion of MTX (study II & III).

Histological evaluation of skin biopsies

Biopsies for histological evaluation of MAZ dimensions were embedded in paraffin, cut vertically in 4-6 µm slices, stained with H & E, and evaluated with a bright field microscope equipped with calibrated CellF software (BX41, Olympus, Hamburg, Germany). Based on histological MAZ dimensions found in study I, MAZ-E, MAZ-DS and MAZ-DM were selected for analyses of impact of MAZ depth on topical MTX delivery (study II), while MAZ-DM was

<table>
<thead>
<tr>
<th>Study</th>
<th># of FCs (n = 154)</th>
<th>Dis- mount time (h)</th>
<th>Samples</th>
<th>Intervention (n= 6 FCs per intervention)</th>
<th>Measuring techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>36</td>
<td>21</td>
<td>Donor Receiver Full-skin</td>
<td><code>MTX +</code></td>
<td><code>PBS +</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>36/21</td>
<td>Skin sections at:</td>
<td>100 µm</td>
<td>200 µm</td>
<td>500 µm</td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td>0.25; 1.5; 7; 18; 24</td>
<td>Donor Receiver Skin sections at:</td>
<td>500 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24</td>
<td>Skin sections at:</td>
<td>500 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

°MTX: Methotrexate
°PBS: Phosphate Buffered Saline
°MAZ-E: Epidermal Microscopic Ablation Zone generated by: 1.69 W, 11.2 ml/MAZ, 2 stacked pulses, 5.6 ml/pulse, 125 µs and 300 Hz
°MAZ-DS: Superficial dermal MAZs generated by: 1.28 W, 25.6 mJ/MAZ, 2 stacked pulses, 12.8 mJ/pulse, 225 µs and 100 Hz
°MAZ-DM: Mid-dermal MAZs generated by: 1.28 W, 256.0 mJ/MAZ, 20 stacked pulses, 12.8 mJ/pulse, 225 µs and 100 Hz
°HPLC: High Performance Liquid Chromatography
°FM: Fluorescence Microscopy
°DESI-MSI: Desorption Electro Spray Mass Spectrometry Imaging (NB: 1 sample per intervention)
°HPLC results from donor and receiver compartments used as control samples in study II as well as in study III
°: Results from skin sections at 500 µm skin level used as control samples in study II as well as in study III
chosen to investigate impact of transport kinetics on topical MTX delivery (study III).

Franz Skin Permeability Cells (FCs)
MTX diffused over 0.64 cm² skin area in FCs. MTX consisted of water-soluble MTX-disodium (Metex aqueous solution for injection, Medac, Varberg, Sweden) in an infinite concentration of 10 mg/ml (1 w/v %, pH: 7.39) corresponding to 15.6 mg/cm² skin area. Stratum corneum of skin samples faced towards the donor compartment filled with 1.0 ml PBS (pH: 7.4) or MTX. Receiver compartment contained 5.5 ml PBS and a magnetic stir bar. Skin barrier impendence was measured in intact and laser-treated skin in order to ensure barrier disruption in laser-treated skin samples and intactness of control skin samples (Prep-check Electrode Impedance Meter 30Hz, General Devices, Ridgefield, New Jersey, USA). FCs were kept at 37°C and dismounted after 21 h in study II and at 0.25 h, 1.5 h, 7 h, 18 h, 21 h or 24 h in study III (Table 4).

Detection of MTX
Intradermal and transdermal MTX concentrations were quantified by HPLC (study II & III), while MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and supported by DESI-MS (study III) (Table 4). HPLC quantification of MTX in fluids is based on fluorescence detection of irradiated MTX [89]. The MTX molecule has negligible fluorescence, while 254 nm UVC-irradiation cleaves MTX stoichiometrically to fluorescent by-products as illustrated in fig. 6 [89, 92]. In addition, this knowledge was utilized to develop a method for visualization and semi-quantification of unlabeled non-radioactive MTX biodistribution in skin sections. Fluorescence images have the potential to allow visualization as well as semi-quantification of MTX in different skin structures at various skin levels. To support the detection of MTX biodistribution in skin, a Desorption Electro-spray Ionization Mass Spectrometry Imaging (DESI-MSI) technique was adapted to visualize MTX in skin sections. DESI-MSI forms highly specific images of compounds in biological tissue sections by LC-MS and has recently been adapted to porcine skin [95].

HPLC quantification
HPLC utilizes chromatography to separate compounds dissolved in liquid solutions for identification and quantification. HPLC quantified MTX in donor fluids, receiver fluids and skin extracts of full-thickness skin or 25 μm horizontal cryo-sections (Table 4).

The HPLC system contained a binary pump and a UV-detector (Agilent Technologies 1200 series G1312B, Santa Clara, California, USA) [44, 89] and had a 100 × 2 mm Synergy Hydro-RP C18 column with 2.5 μm-particle size mounted (Phenomenex, Torrance, California, USA). The mobile phase had a flow-rate of 0.2 ml/min resulting in a retention time of 6 min. Limit of detection (LOD) was 2 × 10⁻⁵ mg/ml.

Cumulative amounts of MTX in receiver fluids and extracts from full-thickness skin were determined by HPLC in mg/ml and presented in mg/cm² skin surface area or percentage of applied MTX dose. MTX concentration in skin sections depended on selected skin volume determined by area × thickness and was presented as mg/cm³ skin volume. For comparison to previous literature, results in μg/100 mg skin could be calculated based on a skin density of 1.1 g/cm² [96].

Fluorescence microscopy
Fluorescence microscopy enabled visualization and semi-quantitative measurements of MTX biodistribution in skin cryo-sections (Table 4). Tissue cryo-sections were illuminated 60 min at room temperature by a 254 nm UVC-lamp (Bio-Budget Technologies GmbH, Krefeld, Germany). UVC-irradiation was followed by digital fluorescence microscopy performed on a widefield fluorescence microscope (Till-Photonics/FEI GmbH, Munich, Germany) illuminated by a 150 W direct current Xenon lamp (Hamamatsu Super-Quiet, Shizuoka-ken, Japan). A dichroic mirror separated 405 nm monochromatic excitation light and 451 nm filtered emission light (Dichroic mirror: Chroma Technologies, Bellows Falls, Vermont, USA; Monochromator: PolYV, 15 nm bandwidth, Till-Photonics/FEI GmbH, Munich, Germany; Emission filter: 20 nm bandwidth, Chroma Technologies, Bellows Falls, Vermont, USA). A 12-bit gray-scale CCD camera recorded MTX-fluorescence under standardized conditions of 10 × magnification and 50 ms excita-

Figure 6: Stoichiometric cleavage of Methotrexate into fluorescent bi-products by 254 nm UVC-light irradiation.
tion time (Hamamatsu ORCA 03, Shizuoka-ken, Japan).

Image analyses were performed by a blinded evaluator in ImageJ (v. 1.47h, National Institutes of Health, Maryland, USA). Fluorescence intensities were designated in gray scale Arbitrary Units (AU). All images were assessed within a 345.000 µm² standardized circular area of even luminescence. The circular area had a diameter of 663 µm and distance from border of laser channel to circle circumference was up to 477 µm. Background fluorescence was measured in an empty area at the microscope slide and subtracted from measured skin values in each individual image.

Porcine AFXL-processed skin had a weak autofluorescence that was detected in 21 h diffusion of PBS through AFXL-processed skin (Table 4). Individual areas of CZ and surrounding tissue were manually demarcated as regions of interest (ROIs), and fluorescence intensities were measured before and after UVC-exposure. The specific fluorescence caused by MTX was calculated by subtracting autofluorescence from MTX-images matched for intervention, ROI and UVC-exposure.

The method to detect MTX-fluorescence in skin sections was experimentally developed from pilot trials and existing literature [89, 92]. MTX-irradiation by 254 nm UVC-light was applied based on previous knowledge of the absorption spectrum for un-irradiated MTX in saline (fig. 7) [92]. To determine optimal duration of irradiation, 30, 40 and 60 min UVC irradiation was tested and the highest fluorescence intensity was seen after 60 min. In addition, small pilot tests of lamp type, irradiation distance and irradiation power were performed to optimize irradiation conditions on skin sections (data not shown).

MTX-fluorescence initially increased during the rest period after ended UVC irradiation. At 500 µm and 1200 µm skin level fluorescence intensity reached stability after 35 – 75 min (p ≥ 0.060), and at 1200 µm skin level at 60 – 75 min (p = 0.063). Difference in MTX-fluorescence at the two skin levels did not reach statistical difference (p ≥ 0.310). Shown are medians and interquartile ranges.

Figure 7: Absorption spectrum of un-irradiated Methotrexate. The red line illustrates the 254 nm UVC-light applied for irradiation of MTX. Illustration modified from Pascu et al. [92].

Figure 8: Development of MTX-fluorescence after UVC-irradiation (medians, interquartile ranges). Fluorescence measured in arbitrary units (A.U.) was stable at 500 µm skin level at 35 – 75 min (p ≥ 0.060), and at 1200 µm skin level at 60 – 75 min (p = 0.063). Difference in MTX-fluorescence at the two skin levels did not reach statistical difference (p ≥ 0.310). Shown are medians and interquartile ranges.

MTX-fluorescence was steadily measured for 500 µm skin level at 35 – 75 min (p ≥ 0.060). The fluorescence intensity was stable for 1200 µm skin level after 60 – 75 min (p = 0.063). Difference in MTX-fluorescence at the two skin levels did not reach statistical difference (p ≥ 0.310). Shown are medians and interquartile ranges.

Figure 9: Excitation and emission spectra of irradiated methotrexate in saline (ims). Left image: Excitation spectra after 15-50 min Xenon irradiation. Right image: Emission spectra after 15 – 120 min Xenon irradiation and 370 nm excitation. Blue lines illustrate the monochromatic excitation wavelength (15 nm bandwidth) and emission filter (20 nm bandwidth) applied in this PhD thesis. Illustration modified from Pascu et al. [92].

DESI-MSI

In study III, DESI-MSI illustrated MTX biodistribution based on the signal of m/z 453 for MTX (Table 4). A specific m/z 303 endogenous skin compound consistent with arachidonic acid was
used as a positive control [97]. Four different interventions were analyzed consisting of MTX or PBS applied to AFXL-processed and intact control skin, respectively. Analyses were performed on a Thermo LTQ XL ion trap mass spectrometer (Thermo Fisher Scientific, San Jose, California, USA) using a custom-built DESI imaging ion source based on a motorized microscope stage (Märzhäuser, Wetzlar, Germany) [98]. Images were generated in negative ion mode with a scan range of m/z 150 – 1150 and processed using Biomap (Novartis, Basel, Switzerland). Additional MS/MS analyses were performed in order to confirm the presence of MTX in skin sections.

Statistics
Descriptive non-parametric statistics were used in all studies since data involved a small number of samples and Gaussian distribution could not be assumed. Statistical analyses and graphical illustrations were performed in GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA) and P values < 0.05 were considered significant. In study I, data consisted of medians and ranges, while in study II and III, data were described as medians and interquartile (IQ) ranges. Paired and unpaired samples were compared by Wilcoxon matched pairs and Mann-Whitney-U tests (2 interventions) or Friedman and Kruskal-Wallis tests (≥ 3 interventions), respectively. Bonferroni-corrections were applied to multiple comparisons.

Linear regression analyses were combined in a mathematical model in study I to demonstrate relationships between laser parameters and MAZ dimensions. Logarithmic transformation was performed when required to obtain linearity. Non-linear curve fittings were used in study II to estimate MTX concentrations and describe saturation kinetics in skin and receiver compartments.

RESULTS AND DISCUSSION
Laser-tissue interactions (study I)

Previous investigations
Laser-tissue interactions caused by low-powered Er:YAG AFXL are sparsely described in the literature. Previous studies evaluated histological effects of up to three stacked pulses applied with high-powered Er:YAG AFXL [21, 99]. It was demonstrated that AD increased with the total amount of energy delivered per MAZ [21, 99] as well as addition of stacked pulses and use of short pulse durations [21]. The CZ broadened by application of increased pulse energy and pulse duration [21], while impact of Er:YAG AFXL parameters on AW was not addressed.

Own investigations
Characterization of MAZs
Study I is the first to provide standardized quantitative measurements of AD, CZ and AW on a large number of histological samples generated by up to 50 repetitive stacked pulses with a miniaturized low-powered fractional Er:YAG laser. Variation of the applied laser energy generated a range of MAZ dimensions from wide superficial craters to narrow deep cone-shaped laser

Figure 10: Examples of MAZs generated with total energy levels of A) 11.2 mJ/MAZ, B) 25.6 mJ/MAZ and C) 256.0 mJ/MAZ. Top row displays single MAZs with coagulation zones and surrounding intact skin. Bottom row illustrates surface ablation of 47 MAZs/cm² on wooden spatulas independently of energy level. Illustration from study II.
channels as demonstrated in fig. 10 and Table 5.

The energy threshold for creating histologically visible ablation, varied with the applied laser parameters. Thus, low pulse energy of 2.3 mJ/pulse delivered at fast pulse repetition rate required 50 stacked pulses and a total energy of 115 mJ/MAZ to produce ablation, while a higher pulse energy of 5.6 mJ/pulse delivered by lower pulse repetition rate created distinct ablation by just 2 stacked pulses and a total energy of 11.2 mJ/MAZ (Table 5, Setting 0 vs. 1).

Ablation Depth (AD)
The applied combinations of laser settings created ADs from 16 to 1348 µm (Table 5, setting 1 & 3). Depth of ablation increased linearly with the logarithm of total energy delivered per MAZ by increasing number of stacked pulses, when power, pulse energy, pulse duration, and pulse repetition rate were kept fixed (fig. 11A, \(R^2 = 0.536 - 0.852, p < 0.001 \)). Maximum AD was obtained by 640.0 mJ/MAZ generated from 50 stacked pulses of 12.8 µJ/pulse (Table 5, setting 3). The deepest ablation was obtained when similar total energy was delivered by fewer stacked pulses of high pulse energy. For example, total energy of 256 mJ/MAZ achieved median AD of 690 µm by 20 stacked pulses of 12.8 µJ/pulse, while total energy of 280 mJ/MAZ generated less AD of median 431 µm by 50 stacked pulses of 5.6 µJ/pulse (Table 5, setting 3 vs. 1). The approximate depth of ablation could be estimated based on the linear relation with the logarithm of total energy: \(AD = \text{slope} \times \log_{10}(\text{Energy}_{\text{total}}) + \text{intercept} \). Slopes and intercepts varied between laser settings (setting 1: 247, -205; setting 2: 169, -121; setting 3: 523, -531) (fig. 11A).

Coagulation Zone (CZ)
Coagulation zones varied from 0 to 205 µm as presented in table 5. In superficial epidermis, MAZs presented without CZ, whereas all dermal MAZs were lined by CZ. The CZ increased linearly with total energy applied by stacked pulses (\(R^2 = 0.563 - 0.753, p < 0.001, \) fig. 11B) and could be estimated based on the linear increase: \(CZ = 0.17 \times \text{Energy}_{\text{total}} + 20 \) (fig. 11B). Variations in power, pulse energy, pulse duration and pulse repetition rate had minor effects on CZs but did not reach statistical significance (setting 1 – 3: \(p = 0.207, \) fig. 11B).

Ablation Width (AW)
Epidermal AW ranged from 37 to 488 µm, increased linearly with the logarithm of stacked pulses (\(R^2 = 0.527 - 0.605, p < 0.001, \) fig. 11C) and could be estimated based on the linear increase: \(AW = 138 \times \log_{10}(\text{stacks}) + 123 \) (fig. 11C). Ablation width was minimally affected by variations in power, pulse energy, pulse duration and pulse repetition rate (setting 1 – 3: \(p = 0.310, \) fig. 11C).

Pulse stacking
Pulse stacking enlarged AD, CZ and AW. For example, 20 vs. 50 stacked pulses of a fixed combination of laser parameters increased median AD from 690 to 926 µm, AW from 275 to 371 µm, and CZ from 47 to 122 µm (Table 5, setting 3). Pulse stacking also increased the time used by the laser to produce each MAZ with all other laser parameters fixed; e.g. from 0.07 to 1.75 seconds by 2 vs. 50 stacked pulses of 12.8 mJ/pulse, 225 µs and 100 Hz.

Table 5: Histological MAZ dimensions created by 2,940 nm fractional laser

<table>
<thead>
<tr>
<th>Setting</th>
<th>Total Energy (mJ/MAZ)</th>
<th>Ablation Depth (µm)</th>
<th>Ablation Width (µm)</th>
<th>Coagulation Zone (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median (Range)</td>
<td>Median (Range)</td>
<td>Median (Range)</td>
<td>Median (Range)</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>46.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115.0</td>
<td>192 (136 – 234)</td>
<td>269 (218 – 344)</td>
<td>56 (36 – 69)</td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>66 (16 – 106)</td>
<td>177 (106 – 202)</td>
<td>6 (0 – 26)</td>
<td></td>
</tr>
<tr>
<td>112.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14.8</td>
<td>80 (31 – 120)</td>
<td>131 (37 – 285)</td>
<td>17 (12 – 34)</td>
</tr>
<tr>
<td>148.0</td>
<td>246 (106 – 347)</td>
<td>331 (161 – 474)</td>
<td>50 (35 – 71)</td>
<td></td>
</tr>
<tr>
<td>370.0</td>
<td>279 (112 – 585)</td>
<td>422 (227 – 488)</td>
<td>79 (52 – 182)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25.6 (^{\text{MAZ-DS}})</td>
<td>190 (145 – 322)</td>
<td>154 (80 – 289)</td>
<td>27 (18 – 62)</td>
</tr>
<tr>
<td>256.0 (^{\text{MAZ-DM}})</td>
<td>690 (380 – 1086)</td>
<td>275 (94 – 414)</td>
<td>47 (30 – 53)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.6 (^{\text{MAZ-DS}})</td>
<td>926 (460 – 1348)</td>
<td>371 (243 – 439)</td>
<td>122 (86 – 205)</td>
</tr>
</tbody>
</table>

\(^* \) Maximal obtained ablation depth \(^\diamond \) Maximal obtained ablation width

NA: Not Available.
Table modified from study I

MAZ-E: 1.69 W, 11.2 mJ/MAZ, 2 stacked pulses, 5.6 µJ/pulse, 125 µs and 300 Hz
MAZ-DS: 1.28 W, 25.6 mJ/MAZ, 2 stacked pulses, 12.8 µJ/pulse, 225 µs and 100 Hz
MAZ-DM: 1.28 W, 256.0 mJ/MAZ, 20 stacked pulses, 12.8 µJ/pulse, 225 µs and 100 Hz
Table 6: Estimation of specific MAZ dimensions by mathematical modeling

<table>
<thead>
<tr>
<th>Setting</th>
<th>1.69 W, 5.6 mJ/pulse, 125 μs, 300 Hz</th>
<th>2.22 W, 7.4 mJ/pulse, 225 μs, 300 Hz</th>
<th>1.28 W, 12.8 mJ/pulse, 225 μs, 100 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD (µm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>13</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>17</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>28</td>
<td>40</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>44</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>70</td>
<td>158</td>
<td>31</td>
</tr>
<tr>
<td>300</td>
<td>112</td>
<td>310</td>
<td>39</td>
</tr>
<tr>
<td>350</td>
<td>179</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>400</td>
<td>281</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>500</td>
<td>-</td>
<td>-</td>
<td>54</td>
</tr>
<tr>
<td>600</td>
<td>-</td>
<td>-</td>
<td>146</td>
</tr>
<tr>
<td>700</td>
<td>-</td>
<td>-</td>
<td>227</td>
</tr>
<tr>
<td>800</td>
<td>-</td>
<td>-</td>
<td>352</td>
</tr>
<tr>
<td>900</td>
<td>-</td>
<td>-</td>
<td>547</td>
</tr>
</tbody>
</table>

AD: Ablation Depth
CZ: Coagulation Zone
AW: Ablation Width
: Number of stacked pulses
MAZ: Microscopic Ablation Zone

Figure 11: A) Ablation Depth increases linearly with the logarithm of total energy: slope × log_{10}(Energy_{total}) + intercept; (p<0.001, R^2_1=0.852, R^2_2=0.536, R^2_3=0.748). B) Coagulation zone increases linearly with total energy applied by stacked pulses: 0.17 × Energy_{total} + 20; (R^2_1=0.712, R^2_2=0.563, R^2_3=0.753, ps0.002). C) Ablation width increases linearly with the logarithm of stacked pulses: 138 × log_{10}(stacks) + 123; (R^2_1=0.605, R^2_2=0.574, R^2_3=0.527, ps0.001). Settings 1 and 2 were significantly different from setting 3 for ablation depth (p < 0.001) while differences between settings did not reach significance for ablation width and coagulation zone (p ≥ 0.207). Illustration modified from study I.
Mathematical estimation of MAZ dimensions

According to mathematical estimations of relations between laser parameters and MAZ dimensions, epidermal MAZs of up to 100 µm AD could only be generated by low pulse energies of 5.6 – 7.4 mJ/pulse delivering total energy levels of 11 – 14 ml/MAZ (fig. 11, Table 6). In epidermal MAZs, CZ and AW were not affected by variation in power level or pulse duration (p = 0.070, fig. 11). Superficial dermal MAZs of 200 to 400 µm AD could be created by total energy of 31 – 310 ml/MAZs. All tested pulse energies (2.3 – 12.8 ml/pulse) could create superficial dermal ablation, and AW as well as CZ varied with the applied combinations of laser parameters. For example, a MAZ of 300 µm AD had either an estimated large AW of 347 µm and thick CZ of 73 µm, or a smaller AW of 190 µm and thin CZ of 27 µm (Table 6, setting 2 and 3).

Intermediate and deep dermal MAZs of at least 500 µm AD were only generated by the highest tested pulse energy level at applied total energy levels of 94 – 547 ml/MAZ. For example, 352 ml/MAZ applied by 28 stacked pulses of 12.8 ml/pulse related to a MAZ of 800 µm AD, 80 µm CZ and 322 µm AW (Table 6, setting 3).

Discussion of results from study I

Study I adds new knowledge of laser-tissue interactions derived from a miniaturized low-powered Er:YAG laser based on large numbers of histological measurements of AD, CZ and AW. Traditional high-powered AFXLs are capable of generating high pulse energy and deliver total energy per MAZ by single or only few stacked pulses. In comparison, the low-powered devices generate less pulse energy and apply repetitive stacked pulses at the same spot in order to build up total energy delivered per MAZ, whereby pulse duration and pulse repetition rate become of increasing importance. The use of stacked pulses affects all MAZ dimensions towards enlargement of AD, CZ as well as AW. It is previously demonstrated that AD increases linearly with total energy in high-powered AFXL devices [13, 20, 21]. The same is true for the low-powered device used in present study when accumulating total energy per MAZ by stacked pulses with fixed power, pulse energy, pulse duration and pulse repetition rate. However, AD do not continue to increase linearly but follow a logarithmic curve pattern, which could be due to gradual accumulation of ablation plume interfering with incoming laser beams during the long exposure-times generated by repetitive pulse stacking. Advantages of low-powered compared to high-powered devices include small size, portability and cheaper acquisition prices, while disadvantages may be less operating stability due to the use of stacked pulses, longer exposure time, and less ability to generate deep penetration.

Impact of MAZ depth on AFXL-assisted delivery of topical MTX (Study II)

Previous investigations

AFXL-assisted topical MTX delivery has not previously been investigated. Thus, there is a need to investigate the importance of MAZ depth to MTX deposition and biodistribution in skin as well as transdermal permeation. However, relations between MAZ depth and drug deposition in skin has been studied in vitro and in vivo in animal models for laser-assisted topical delivery of prednisone, lidocaine, imiquimod, ingenol mebutate, MAL, ALA, and test molecules [48, 50–52, 54, 55, 61]. Results were conflicting, indicating that the impact of laser channel depth on drug deposition in skin may be affected by molecular properties of the delivered drug. Impact of MAZ depth on transdermal permeation was reported for prednisone, lidocaine, diclofenac and imiquimod in in vitro and in vivo animal models [52–54, 56], and deeper MAZs generally increased transdermal permeation of topical drugs.

Own investigations

Characterization of MAZs used for topical MTX delivery

The investigated MAZ-E, MAZ-DM and MAZ-DM were median 66, 190, and 690 µm deep; 177, 154, and 275 µm wide; and lined by 6, 27, and 47 µm of coagulation zones, respectively (fig. 10A – C). Corresponding calculated surface ablation densities were at a comparable low level of 0.9 – 2.8 % and all MAZs ablated minimal total skin volumes of 0.02 – 0.44 %.

![Figure 12: A) Full-thickness skin deposition and B) transdermal permeation of Methotrexate (MTX) through microscopic ablation zones (MAZs) of varying depth (E: Epidermal, DS: Superfical-dermal, DM: Mid-dermal). Bonferroni-corrected by 6. *: significantly higher than intact skin, **: significantly higher than MAZ-E. Illustration from study II.](image)
Impact of MAZ depth on topical MTX delivery

AFXL significantly increased delivery of MTX compared to intact control skin, and the amount of MTX in skin increased by delivery through MAZs of increasing depth, confirmed quantitatively by HPLC and semi-quantitatively by fluorescence microscopy (figs. 12, 13 and 14). Thus, deposition in non-ablated full-thickness skin was 0.07 mg/cm² (0.45 % of 15.6 mg/cm² MTX applied), and increased 5-fold to 0.37 mg/cm² (2.37 %) by MAZ-E, 8-fold to 0.59 mg/cm² (3.78 %) by MAZ-DS, and 10-fold to 0.73 mg/cm² (4.68 %) by MAZ-DM (p < 0.001, fig. 12A). Transdermal permeation also increased with increasing MAZ depth (fig. 12B). Permeation through intact skin was 0.006 mg/cm² (0.04% of applied MTX dose), and increased 83-fold to 0.58 mg/cm² (3.72 %) by MAZ-E, 93-fold to 0.65 mg/cm² (4.17 %) by MAZ-DS and 149-fold to 1.04 mg/cm² (6.7 %) by MAZ-DM (p = 0.003, fig. 12B). The ratio of transdermal permeation versus full-thickness skin deposition varied between 1.2 and 1.7 and was independent of MAZ depth (p = 0.172).

Intradermal biodistribution profile of MTX

MTX was delivered by AFXL into the entire skin (figs. 13 and 14), while deeper MAZs led to delivery of more MTX at each skin layer illustrated quantitatively by HPLC (p ≤ 0.038 at all skin levels, fig. 13) and supported semi-quantitatively by fluorescence microscopy (fig. 14, 1200 µm skin level: p = 0.003). MAZ-DM accumulated higher MTX-concentrations than MAZ-E throughout the skin (p ≤ 0.046), and than MAZ-DS at 200 µm skin level (p = 0.007). Dermal MAZs delivered maximum MTX concentrations deeper into skin than epidermal MAZs. Thus, maximum concentration of 1.85 mg/cm³ was delivered at 500 µm through MAZ-E, while all dermal MAZs (MAZ-DS and MAZ-DM combined) delivered maximum concentration of 3.51 mg/cm³ at 800 µm skin level (fig. 13).

Biodistribution of MTX after saturation of coagulation zone and surrounding skin

MTX diffused radially from MAZs through CZs and was measured in up to 477 µm of surrounding skin corresponding to approximately half the distance between borders of two adjacent MAZs (fig. 10). MTX was delivered through all MAZ depths with varying CZ thicknesses; 6 µm CZ in MAZ-E, 27 µm in MAZ-DS, and 47 µm in MAZ-DM. Cross sections of MAZs were only visible at 100 and 500 µm skin levels due to the depth of the laser channels. Radial biodistribution was demonstrated by similar fluorescence intensities in CZ and surrounding skin. At 100 µm skin level, MTX-fluorescence in CZ vs. surrounding skin was 298 vs. 206 AU in MAZ-DS (p = 0.813) and 240 vs. 252 AU (p = 0.438) in MAZ-DM, while at 500 µm skin level it was 390 vs. 355 AU (p = 1.000) in MAZ-DM (fig. 15).

Figure 13: HPLC quantification of skin sections from five skin levels between 100 and 1200 µm.

: Significant compared to intact skin **,* Significant compared to MAZ-E **,** Significant compared to MAZ-DS. All comparisons are Bonferroni-corrected by 3.

MAZ-E: epidermal microscopic ablation zone; MAZ-DS: Superficial dermal MAZ; MAZ-DM: mid-dermal MAZ. Illustration from study II.

Figure 14: Semi-quantitative measurements of fluorescence intensities in three skin levels after MTX-delivery through epidermal (MAZ-E), superficial-dermal (MAZ-DS) and mid-dermal Microscopic Ablation Zones (MAZ-DM). Values are corrected for autofluorescence. Illustration from study II.
Discussion of results from study II

Please see study III for an overall discussion of AFXL-assisted delivery of topical MTX

Transport kinetics of AFXL-assisted topical MTX delivery (study III)

Previous studies

Relation between application of topical MTX on skin surface and accumulation of MTX over time within the skin is largely unknown. One previous study investigated the time perspective of topical MTX deposition by a combination of microneedles and iontophoresis in in vivo rat skin [72]. The skin surface was exposed to MTX for 1 h, at which time the mid-dermal MTX concentration peaked and subsequently subsided in the following 4 h [72]. Data suggest a direct proportion between topical MTX exposure and mid-dermal MTX concentration. However, results may vary with applied enhancement strategy and knowledge is lacking of biodistribution within skin and of long-term exposure in order to establish saturation kinetics and maximal level of MTX deposition in skin.

Transport kinetics of transdermal MTX permeation has previously been described in vitro across rodent or human skin after chemical enhancement [68, 70, 71, 104], microneedles [72, 79], iontophoresis [73–75, 77] or full-ablative laser exposure [78]. Overall, transdermal permeation was detected between 15 min and 5 h after application of MTX and increased over time up to 24–48 h after application. The highest absorption rates were observed...
shortly after application and maximal permeation was $2 - 140$ times higher than passive diffusion across intact skin [68, 70–75, 77–79, 104].

Own investigations

Kinetics of MTX deposition in skin

MTX accumulated continuously over time in mid-dermal AFXL-processed skin. After 15 min of application, MTX fluorescence was visible in fluorescence microscopy images (fig. 16) and detectable by HPLC ($p = 0.031$, fig. 17A). Delivery for 1.5 h through AFXL-processed skin exceeded 21 h deposition in intact control skin (1.37 vs. 0.30 mg/cm3, $p = 0.002$, fig. 17A) and AFXL-processed skin saturated after 7 h at a 10-fold increased concentration compared to intact control skin (3.08 vs. 0.30 mg/cm3, $p = 0.002$, fig. 17A). Mathematically, MTX accumulation was estimated to fit an exponential cumulative distribution, corresponding to a physical model of transport across a permeable membrane between two compartments: MTX_{skin} (mg/cm3) = $2.501 \times (1 - e^{(-0.6022 \times \text{time})})$, ($R^2 = 0.788$, fig. 17A). According to this mathematical estimate, mid-dermis was 50% saturated at 1 h, 75% saturated at 2 h, approaching complete saturation after 7 h at a predicted value of 2.50 mg/cm3 skin volume. After 24 h diffusion, DESI-MSI illustrated that MTX had distributed in an entire mid-dermal section of AFXL-processed skin (fig. 18A). MS/MS confirmed the presence of specific MTX mass fragments in AFXL-processed skin after MTX application (fig. 18B). In contrast, MTX was not detected in intact control skin or in PBS control samples (fig. 18A vs. figs. 18C and D).

Biodistribution of MTX over time in coagulation zone and surrounding skin

MTX-fluorescence in CZ and surrounding skin increased over time as demonstrated by fluorescent images and semi-quantitative measurements (figs. 16 and 19). MTX-fluorescence in CZ increased rapidly and exceeded autofluorescence after 15 min (601 vs. 361 AU, increase: 240 AU, $p = 0.015$, fig. 19). In surrounding skin, MTX-fluorescence increased more slowly and reached significance compared to autofluorescence at 1.5 h (649 vs. 332 AU, increase: 317 AU, $p = 0.004$, fig. 19). In accordance, fluorescence intensity was higher in CZ than in surrounding skin until skin was saturated with MTX at 7 h (1.5 h: 507 vs. 317 AU (corrected for autofluorescence (cfa)), $p = 0.031$). After 7 h, fluorescence intensity in CZ was similar to or lower than fluorescence intensity of surrounding skin (7 h: 434 vs. 480 AU (cfa), $p = 0.563$, fig. 19).

Kinetics of transdermal MTX permeation

Initially, MTX permeation across AFXL-processed skin was

Figure 17: Quantitative distribution over time of Methotrexate (MTX) in A) mid-dermal skin and B) receiver compartments (medians with interquartile ranges, *: $p < 0.05$). Illustration from study III.

Figure 18: Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI-MSI) of mid-dermal skin sections after 24 h diffusion of methotrexate (MTX) or phosphate buffered saline (PBS) into laser-processed (+AFXL) or intact skin (−AFXL). A) The m/z 453 MTX-ion was present in the entire mid-dermal skin section of laser-processed skin. B) Tandem mass spectrometry analysis confirmed presence of specific MTX mass fragments in laser-processed skin. C) Histology of the four interventions was similar to D) DESI-MSI images of endogenous skin compound with m/z 303 that served as positive control. Illustration from study III.
permeation is constant for all MAZ depths. As skin was saturated by MTX at 7 h, permeation across AFXL-processed skin exceeded intact control skin (0.24 mg/cm² vs. 0.006 mg/cm², $p = 0.002$, fig. 17B). After skin saturation, transdermal permeation increased rapidly towards 1.25 mg/cm² at 24 h (8.01% of 15.6 mg/cm² applied MTX), which was a 208-fold increase compared to intact control skin (1.25 mg/cm² vs. 0.006 mg/cm², $p = 0.002$). MTX concentration in receiver compartment was mathematically estimated based on a sigmoidal curve with nearing saturation: MTX$_{receiver}$ (mg/cm²) = 1.4136 / (1 + $10^{(12.04 - \text{time (h)} + 0.0929)}$) = 0.0936, ($R^2 = 0.7905$, fig. 17B). According to this mathematical model, receiver compartment should be 50% saturated at 13 h, 75% at 18 h, approaching a predicted saturation value of 1.32 mg/cm² skin surface area after 35 h.

Discussion of results (study II and III)

Pretreatment by AFXL facilitates rapid topical delivery of MTX to the skin. Regardless of MAZ depth, MTX can be found in all layers of the skin after AFXL-assisted delivery, but MAZ depth modulates total skin deposition and intradermal biodistribution within the skin layers. During the initial hours of AFXL-assisted delivery, MTX is mainly deposited in skin and the rate of absorption into surrounding skin is affected by the thermal coagulation around MAZs, while transdermal permeation is minimal. After skin saturation however, MTX is distributed to the entire skin around MAZs and the ratio of skin deposition versus transdermal permeation is constant for all MAZ depths.

The rate of topical drug delivery into skin is determined by Fick’s law of diffusion: $\text{Flux} = (P \times D \times \Delta C) / \Delta L$ [6, 7]. The partition coefficient (P) describes partitioning of a drug from external medium into skin at a certain concentration gradient (ΔC), while diffusion through a certain distance (ΔL) of skin is determined by the diffusion coefficient (D) within skin. MTX is a hydrophilic molecule that diffuses negligibly through the intact lipophilic stratum corneum. Pretreatment with AFXL enables MTX delivery by disruption of skin barrier. Theoretically, the absorption rate of topical MTX is increased by reduction of ΔL and by exposure of MTX to underlying skin and hydrophilic interstitial matrix with an altered D. In agreement, this PhD thesis demonstrated that MTX delivery through MAZ-DMS for 1.5 h exceeded 21 h deposition in intact control skin. It was also demonstrated that CZ modulated the initial rate of drug absorption, which could be due to an altered D in the thermally coagulated tissue at the border of the ablated channels. Previously, it has been speculated whether thickness of CZ influences topical drug delivery [45]. Thermal coagulation prevents oozing and bleeding that may impair drug uptake. In contrast, CZ may in itself induce a barrier for drug uptake in the skin. Yet, a specific clinical relation between CZ and topical AFXL-assisted drug delivery is not yet established and may also be affected by molecular properties of the selected drug. The findings that biodistribution is briefly delayed by CZ, while after skin saturation MTX is distributed through CZs of 6–47 µm suggest that AFXL can be used for topical MTX delivery regardless of CZs although the initial rate of absorption may be affected. Thus, interesting new knowledge is added to clarify on the importance of CZs in AFXL-assisted topical delivery of hydrophilic drugs.

Present data demonstrated that delivery of hydrophilic MTX increased with MAZ depth suggesting that the stratum corneum is not the only barrier for topical drug delivery of hydrophilic molecules. However, the impact of MAZ depth on skin deposition of drug is not clearly understood in present and previous studies. Some variation of data may be caused by different laser devices, FC study designs, saturation kinetics, CZ thickness or molecular weight of applied molecules, yet none of these differences provide a clear explanation for the contradicting results [51, 53–55, 61]. However, the partition coefficient (P) of the diffusing drug may provide a possible explanation for the particular importance of MAZ depth to drug biodistribution in skin. The partition coefficient (P) covers the ratio of solubility of an un-ionized molecule in two immiscible liquids, e.g. octanol and water, while the logarithm of P describes hydrophilicity ($\log P < 0$) or lipophilicity ($\log P > 0$) of a molecule. Skin deposition of the hydrophilic molecules MTX ($\log P = −1.85$), sulfaphenamine B ($\log P = −0.45$) [61] and methylene blue ($\log P = −0.10$) [61] increased with deeper MAZs, while accumulation of lipophilic molecules, e.g. prednisone ($\log P = 1.46$) [54], diclofenac ($\log P = 1.90$) [53], lidocaine ($\log P = 2.44$) [55], and ingenol mebutate ($\log P = 2.51$) [51] was not affected by MAZ depth. Interestingly, increased uptake after deeper laser penetration was not detected after AFXL-assisted delivery of photosensitizers despite the hydrophilicity of ALA ($\log P = −1.50$) and MAL ($\log P = −1.20$) [48, 50]. However, photosensitizers are quantified by their fluorescent conversion product protoporphyrin IX (PPIX) rather than the actual amount of delivered drug. Thus, saturation of the enzymatic conversion process could be the reason why a correlation between MAZ depth and delivery of hydrophilic photosensitizers was not demonstrated.

In summary, AFXL facilitated rapid delivery of MTX into skin. Thermal CZ influenced the initial rate of absorption while MAZ depth modulated biodistribution within skin as well as the total

Figure 19: Methotrexate (MTX) fluorescence over time in Coagulation zone (CZ) and surrounding mid-dermal skin. All values are corrected for autofluorescence (medians with interquartile ranges, *: $p < 0.05$). Illustration from study III.
amount of delivered drug. MTX was initially deposited in skin and transdermal permeation mainly occurred after skin saturation. It was proposed that hydrophilicity of the MTX-molecule may be the possible explanation for the impact of MAZ depth on topical delivery.

CONCLUSIONS
This PhD thesis demonstrates that:

1. MAZ dimensions could be estimated from pre-defined combinations of laser parameters based on histological measurements and mathematical modeling of a wide range of laser-tissue interactions generated by pulse stacking with a miniaturized, low-powered Er:YAG AFXL.

2. Pre-treatment by AFXL significantly increased diffusion of topical MTX compared to intact skin. Deeper MAZs delivered higher MTX concentrations than superficial MAZs and MAZ depth influenced total skin deposition, intra-dermal biodistribution profile as well as transdermal permeation of MTX.

3. MTX absorbed rapidly into mid-dermal AFXL-processed skin and transdermal permeation was minimal until skin saturation occurred. Biodistribution of MTX to the entire surrounding skin was briefly delayed but not hindered by the thermal coagulation zones lining the laser channels.

CLINICAL PERSPECTIVES
The technique of AFXL-assisted delivery of topical MTX has the potential to replace systemic therapy of localized dermatological diseases, whereas it is less suitable for widespread or systemic disease. Laser treatment can only be applied to a limited body area due to time consumption during treatment and risk of systemic absorption of topically applied drug. Thus, potential diseases of interest include anti-tumor treatment of NMSC in specific areas or anti-inflammatory treatments of localized plaque psoriasis [105, 106], hypertrophic scars [107], granuloma annulare [108], and morphea [109]. In addition, previous investigations have demonstrated efficacy from intrallesional MTX treatments of keratoacanthomas [110–116], squamous cell carcinomas [117, 118], large cell lymphomas [119, 120], cutaneous involvement of leukemia [121] and nail psoriasis [122]. Nail psoriasis can be challenging to treat [123], yet, one case report demonstrated complete clearance two years after six weekly treatments with intrallesional MTX [122]. However, MTX injected directly at the nail bed is painful and requires local anaesthesia. Topical MTX delivered by AFXL may be a more convenient alternative, since AFXL-assisted drug delivery has previously been successfully applied in other nail disorders [39, 124]. Overall, the AFXL-assisted delivery of topical MTX may be a more targeted and standardized treatment compared to intrallesional injections.

Potential advantages of AFXL-assisted topical delivery of MTX include targeted treatments at diseased skin in specific skin layers, enhanced local concentrations, higher efficacy, minimized adverse effects and increased compliance. However, in order to develop a successful clinical treatment from AFXL-assisted topical delivery of MTX, a number of issues need to be addressed; relevant indications should be clarified, topically applied concentrations should lead to relevant concentrations at the diseased cells, and topical MTX must be physiologically active. In addition, safety issues regarding local skin irritation and systemic absorption has to be considered.

It has been questioned whether MTX requires systemic activation or exerts local efficacy after topical application [125, 126]. Previously, chemically enhanced topical MTX application has improved psoriasis in some studies [105, 106, 127–131], yet not in others [125, 126, 132, 133]. Conflicting data may be explained by the use of various MTX concentrations and application times, or by uneven effect of chemical enhancement, which is supported by a reported range of MTX recovery in skin after chemically enhancement from 0.01% to 50% [68, 69, 71]. Within the skin, biodistribution or dispersal of MTX may vary [68, 125–127]. In addition, high concentrations of folic acid in skin may block the mechanism of action for MTX [125, 134]. Overall, literature does however support local efficacy of topical MTX in psoriasis [105, 106, 127–131] as well as in keratoacanthomas [110, 111, 113, 115, 116].

In present data, topical AFXL-assisted MTX delivery led to MTX-concentrations in mid-dermis of 168, 181 and 296 µg/100 mg skin. In comparison, MTX-concentrations of 5 or 93 µg/100 mg skin were obtained in previous studies after topical application of 2.5 mg/ml MTX by chemical enhancement [132] or intravenous injection of 82.5 mg MTX [135]. Thus, AFXL delivered higher MTX concentrations in skin than systemic administration and than previously reported chemical barrier disruption, which is likely to be clinically relevant.

Optimal concentrations of MTX to exert specific anti-tumor or anti-inflammatory activity at diseased cells in the skin must be determined. A particular clinical area of interest includes precancerous lesions and NMSC as e.g. thick actinic keratoses or nodular BCCs that can be challenging to treat [25, 32, 136, 137]. Previous investigations of cell cytotoxicity suggest that irreversible cell death is only seen after more than 18 h of MTX exposure and that re-exposure within a few days is required [44, 134, 138]. However, in order to adapt the technique of AFXL-assisted topical MTX delivery to the treatment of tumors, knowledge must be obtained from cytotoxic cell assays of varying tumor cell lines regarding optimal concentrations of MTX at the tumor cells, exposure time, effect of repetitive treatments, and treatment intervals. In addition, combination of MTX and photodynamic therapy (PDT) for the treatment of NMSC has been suggested [137, 139, 140]. Previous in vitro studies of tumor cell lines and in vivo animal studies have demonstrated that pre-treatment with low-dose systemic MTX promotes tumor cell differentiation and increase intracellular PPIX production, whereby the efficacy of PDT-treatment increases [137, 139, 140]. Thus, topical AFXL-assisted delivery of MTX followed by topical PDT seems worthy of further investigations.

The issue of safety is important when considering clinical implementation of a new AFXL-assisted topical MTX treatment. Previous in vivo studies found that MTX was well-tolerated topically and did not cause systemic adverse effects [105, 106, 125–130, 132, 133]. In present data, low surface ablation density of 0.9 – 2.8 % and minimal total ablation of 0.02 – 0.44 % skin volume applied for topical delivery of MTX was able to increase skin deposition up to 10-fold compared to the negligible absorption detected in intact skin. Thus, AFXL-assisted delivery of MTX may be a mild treatment causing fast recovery of skin barrier and low risk of infections and scarring. However, up to 8 % transdermal permeation of MTX was found after delivery through MAZs pene-
trating into mid-dermis. Therefore, treatment area must be limited in order to avoid clinically significant systemic absorption.

Overall, it is the clinical perspective that AF XL-assisted topical MTX-delivery may be an appropriate alternative to systemic MTX therapy for localized dermatologic disorders. Still, further investigations are needed before the technique can be translated into clinical treatments.

LIMITATIONS

The present PhD thesis represents the first investigations of AF XL-assisted delivery of topical MTX. However, data do not directly translate into clinical treatments for several reasons.

A miniaturized low-powered Er:YAG AF XL was used to generate MAZs for topical drug delivery as a general model for ablative fractional laser channels. However, small varieties may be observed in MAZs generated by different AF XL devices.

Although diffusion models, such as the FCs, are widely accepted for investigations of drug delivery, in vitro results may not correlate to in vivo data on live skin of intact blood flow and metabolism. In addition, diffusion across healthy and diseased skin may vary.

The golden standard is to use human skin for in vitro diffusion studies. Present data were however generated in porcine skin, since it is an acknowledged model for human skin penetration [7]. Porcine skin is frequently used in previous studies of laser-tissue interactions [20] and in vitro drug delivery [51, 53–55, 74], and it has previously proven anatomically, chemically and functionally similar to human skin [55, 85].

Split-thickness skin is generally recommended for studies of drug diffusion [7]. Full-thickness skin was however selected in present investigations, since potential skin barrier function of all skin layers was investigated, and MTX delivery through MAZs reaching mid-dermal skin layers could only be examined in skin of intact dermal layers.

SUMMARY

Ablative fractional lasers (AF XL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AF XL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver Methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by High Performance Liquid Chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and Desorption Electro Spray Mass Spectrometry Imaging (DESI-MSI) (study III).

Laser-tissue interactions generated by AF XL

AF XL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions.

Impact of MAZ depth on AF XL-assisted topical MTX delivery

Pretreatment by AF XL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intra-dermal biodistribution profile towards maximum accumulation in deeper skin layers. Biodistribution of MTX occurred throughout the skin without being compromised by coagulation zones of varying thickness. The ratio of skin deposition versus transdermal permeation was constant, regardless of MAZ depth.

Impact of transport kinetics on AF XL-assisted topical MTX delivery

MTX accumulated rapidly in AF XL-processed skin. MTX was detectable in mid-dermis after 15 min and saturated the skin after 7 h at a 10-fold increased MTX-concentration compared to intact skin. Transdermal permeation stayed below 1.5 % of applied MTX before skin saturation, and increased afterwards up to 8.0 % at 24h. MTX distributed radially into the coagulation zone within 15 min of application and could be detected in surrounding skin at 1.5 h. Upon skin saturation, MTX had distributed in an entire mid-dermal skin section.

In conclusion, adjusting laser parameters and application time may enable targeted treatments of dermatological disorders and potentially pose a future alternative to systemic MTX in selected dermatological disorders.

REFERENCES

Fractional carbon dioxide laser

Song HS, Jung S-E, Jang YH, Kang HY, Lee E-S, Kim YC.

Fractional carbon dioxide laser-assisted photodynamic therapy for patients with actinic keratosis.

Photodermatol Photoimmunol Photomed 2015; n/a–n/a. doi:10.1111/phpp.12184.

102. Stumpp OF, Bedi VP, Wyatt D, Lac D, Rahman Z, Chan KF. In vivo confocal imaging of epidermal cell migration and

